Titanium Powder, Alloys by Electrolysis

by on

The Economist covered an industrial development in a recent article entitled “A Tantalising Prospect” that would catch the eye of anyone remotely interested in the metal industry.

The process described effectively allows the reduction of high-melting-point metal ores such as titanium, tantalum, and potentially other expensive metallic elements including neodymium, tungsten and vanadium, from the oxide to the metal in powder form.

The process is a type of electrolysis, but rather than hold the metal oxides in liquid form, it holds them as metal powders in a liquid salt at much lower temperatures and hence requires much lower energy inputs than would be the case if they were reduced in the liquid state.

To quote the article, the process starts with powdered metal oxide, which serves as the cathode. The anode is made of carbon, and the molten salt (which has a temperature of 1,000°C) acts as an electrolyte, permitting current, in the form of oxygen ions, to pass from cathode to anode.

There, the ions react to form carbon dioxide, while the cathode is gradually transformed from oxide to metal.

The current first industrial-size trial is aiming at the 2,500-ton/year tantalum market; the next stage will be the far greater prize of making inroads into the 140,000-ton titanium market. Titanium has potentially many more uses if the unit price was lower. It is believed 3D additive manufacturing probably offers the best route to exploiting new uses for the titanium powders produced.

The firm developing the technology is called Metalysis, a spin-off from Cambridge University where the initial research was carried out. Stepping back from the initial enthusiasm for any new metals technology, though, one has to ask how far the technology is likely to go in a high electricity priced market like the UK.

Certainly as a percentage of the finished metal price, the power consumption of Metalysis titanium powder is likely to be much less than the power component in, say, current aluminum prices - MetalMiner IndXaluminum, which also uses an electrolytic process and where the power component is reckoned to be up to a third of the approximately $2,100/ton production cost of primary aluminum.

RELATED: Do you buy aluminum? Learn how buying custom shapes can reduce your spend – register for our FREE webinar on March 7, 2013.

But even so, Metalysis’ return may come more from licensing the technology, once they have entered commercial viability, rather than as a UK-based volume manufacturer.

Still, regardless of whether production migrated to low-cost power centers like the Middle East, designers would be delighted to have access to low-cost titanium alloys for use in more humdrum applications than traditional aerospace, opening the possibility of wider use in automotive and other transport applications –where uptake of the metal on the basis of its low weight and high strength are only restrained by its even higher price.

Comment (1)

    Leave a Comment

    Your email address will not be published. Required fields are marked *